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Learning Goals

1. Define and give examples of natural / quasi experiments
2. Explain three empirical strategies (cross-section, before-and-after and
difference in differences) to estimate the causal effect of a treatment

3. Explain and defend the assumptions that underpin each of the three
empirical designs

4. Analyze data using the three designs using R
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Where we’ve been

In previous sessions, we have:

• Seen how randomized control trials and A/B tests can retrieve causal effects
• Used linear regression to estimate the causal effects of interest
• Discussed how we can use pre-experiment data to minimize variance in a
A/B test design

• Addressed two importance issues for inference: heteroskedasticity robust-
and clustered standard errors

Now we’re going to leave the experimental ideal, to see if we can still recover
causal effects of binary treatments
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Leaving the Experimental Ideal

There are many situations where we either:

• Cannot completely randomize treatment between individuals/firms we want
to study

• Or (worse), we cannot directly manipulate treatment assignment

Question: How can we deal with selection bias and/or omitted variable bias if we
do not randomize?
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Natural/Quasi Experiments

Our goal: Define a setting and hypotheses that get us as close as possible to a
randomized experiment

• These methods are sometimes referred to as ”natural experiments” or
”quasi-experiments”

What is a Natural Experiment?

• Units (individuals, firms etc) are exposed to treatment and control
conditions in a way that is outside of the control of researchers/analysts

• BUT the process that governs assignment resembles a random assignment

• The analyst must convincingly argue that the setting under consideration
resembles an experiment
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Natural/Quasi Experiments: Examples
Good natural experiments are studies in which there is a transparent exogenous
source of variation in the explanatory variables that determine treatment
assignment
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Research Design for Natural Experiments

We will focus in on Difference in Differences (DiD, or Diff-in-Diff) as a research
design to analyze data from a natural experiment

• One of the most popular methods used in empirical work to estimate the
effect of a marketing intervention

• The idea will be very simple (and easy to communicate), and there are many
settings where it “fits well” to the context we want to study

• This method “work” due to a non-refutable assumption: parallel trends

• A lot of work thus must go in to showing this assumption is reasonable in the
application under study
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Confounding in Observational Data

Confounder: pre-treatment variable (Z) affecting
the treatment (T) and outcome (Y)

Lead to confounding bias in the estimated SATE
due to these differences

• ̄𝘠𝘤𝘰𝘯𝘵𝘳𝘰𝘭 is not a good proxy for 𝟣
𝘯 ∑𝘯

𝘪=𝟣 𝘠𝘪 (𝟢)
• Types of bias:

• (self-) Selection bias into treatment
• Omitted Variable correlated to treatment
and outcome

T

y

z
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The Fundamental Problem of Causal Inference

Recall the fundamental problem of causal inference

Analyst must infer counterfactual outcomes

Can we find other ways to estimate the counterfactual outcome of a treated
individual using other observations ?
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A (Fictitious) Example

Business questions: Do search engine ads increase spending?

Test setting: Google Sponsored Ads, Large Retailer

Unit: consumers

Treatments: control group - no ads, treatment group - sees ads

Response: spending in the next 30 days

Selection: all consumers who purchased in last 180 days

Assignment: Search engine ads were banned in one province by government on
the first day of November of a calendar year, left on in adjacent province

Sample size: 1,000 consumers split 50/50 over provinces
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Load and inspect data

df <- read_csv("data/diff_in_diff.csv")
head(df)

# A tibble: 6 x 5
customer_id time_period after treatment_group sales

<dbl> <dbl> <dbl> <chr> <dbl>
1 1 1 0 control 3.31
2 995 1 0 treatment 0
3 730 1 0 treatment 7.92
4 697 1 0 treatment 0
5 929 1 0 treatment 0
6 896 1 0 treatment 1.24
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Research Designs

How do we find a good comparison group?

• Depends on the data available

Three types observational study research designs:

1. Cross-sectional design: Compare outcomes of treated and control units at
one point in time

2. Before-and-after design: Compare outcomes before and after a unit has
been treated, but we need data over time for the treated group

3. Difference-in-difference design: Compare changes in the treatment group
over time to changes in the control group over time. Needs data over time
for the treated and control group
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Research Designs
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Cross Sectional Design

• Compare treated and control groups after the
treatment happens

• Assumption: groups are identical on average
• Sometimes this is called unconfoundedness or
as-if randomized

• Cross-section estimate:

̄𝘠 after
treated − ̄𝘠 after

control

• Could there be confounders?
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Cross Sectional Design in R: Manually
# after period
cross_section <-

df %>%
filter(after == 1)

cross_section_est <- cross_section %>%
# group means
group_by(treatment_group) %>%
summarize(

mean_sales = mean(sales)
) %>%
# difference between groups
ungroup() %>%
mutate(estimate = mean_sales - lag(mean_sales)) %>%
na.omit() %>%
purrr::pluck("estimate")

message("Cross Section Estimate: ", cross_section_est)

Cross Section Estimate: 1.31374
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Cross Sectional Design in R: Linear Regression

tidy(lm(sales ~ treatment_group,
data = cross_section))

# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 2.53 0.158 16.0 1.77e-51
2 treatment_grouptreatment 1.31 0.224 5.88 5.68e- 9
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Before-After Comparison

• Compares individuals before and after the
treatment

• Advantage: all person specific features held fixed
• “comparing within person over time”

• Before vs after estimate:

̄𝘠 after
treated − ̄𝘠 before

treatment

• Assumption: No time varying confounders
• i.e. no evolution of outcome over time that is not
due to the treatment
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Before and After in R: Manually
# treatment group, period immediately before and after
before_after <-

df %>%
filter(time_period %in% c(10,11),

treatment_group == "treatment")

before_after_est <- before_after %>%
group_by(after) %>%
dplyr::summarize(

mean_sales = mean(sales)
) %>%
ungroup() %>%
mutate(estimate = mean_sales - lag(mean_sales)) %>%
na.omit() %>%
purrr::pluck("estimate")

message("Before After Estimate: ", before_after_est)

Before After Estimate: 1.64522
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Before and After in R: Linear Regression

# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 2.20 0.155 14.2 1.14e-41
2 after 1.65 0.219 7.50 1.40e-13
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Two differences can be better than one

• Use the before/after difference of control group to
infer what would have happened to treatment
group without treatment.

• DiD Estimate:

( ̄𝘠 after
treated − ̄𝘠 before

treatment)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Change in the treatment group

− ( ̄𝘠 after
control − ̄𝘠 before

control)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Change in the control group

i.e. the change in the treatment group above and beyond
the change in the control group

• Assumption: parallel trends
• Changes in the outcome for the treated group
would have been the same as in the control group
in the absence of treatment

• Threat to inference: non-parallel trends
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Difference in Differences in R
# did data -- treat and control, before and after
did_data <-

df %>%
filter(time_period %in% c(10,11))

did_est <- did_data %>%
group_by(treatment_group, after) %>%
summarise(mean_sales = mean(sales)) %>%
ungroup() %>%
pivot_wider(names_from = after,

values_from = mean_sales) %>%
mutate(across_rows_diff = `1` - `0`) %>%
mutate(estimate = across_rows_diff - lag(across_rows_diff)) %>%
na.omit() %>%
purrr::pluck("estimate")

print(paste0("Diff in Diff Estimate: ", did_est))

[1] "Diff in Diff Estimate: 0.91402"
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Estimating the Treatment Effect with Diff in Diff

Why does Diff in Diff allow us to
estimate the effect of the marketing intervention?

Let’s maintain the two groups and two time periods set up

• Groups: Treatment and Control
• Time Periods: Before and after

Let’s put the mean outcomes for each combination in a table
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The 2 x 2 Table

Before After
Control ̄𝘠 before

control
̄𝘠 after
control

Treatment ̄𝘠 before
treatment

̄𝘠 after
treatment
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The 2 x 2 Table
Let’s update the notation:

1. Control group, before intervention starts

̄𝘠 control
before = 𝛽𝟢

2. Control group, after intervention starts

̄𝘠 control
after = 𝛽𝟢 + 𝛽𝟣

3. Treatment group, before intervention starts

̄𝘠 treatment
before = 𝛽𝟢 + 𝛽𝟤

4. Treatment group, after intervention starts

̄𝘠 treatment
after = 𝛽𝟢 + 𝛽𝟤 + 𝛽𝟣 + 𝛿
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The 2 x 2 Table

Before After
Control 𝛽𝟢 𝛽𝟢 + 𝛽𝟣
Treatment 𝛽𝟢 + 𝛽𝟤 𝛽𝟢 + 𝛽𝟤 + 𝛽𝟣 + 𝛿
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The 2 x 2 Table

Let’s take differences in the following order:

• Across columns, then
• Across rows

Before After After - Before
Control 𝛽𝟢 𝛽𝟢 + 𝛽𝟣 𝛽𝟣
Treatment 𝛽𝟢 + 𝛽𝟤 𝛽𝟢 + 𝛽𝟤 + 𝛽𝟣 + 𝛿 𝛽𝟣 + 𝛿

Treatment - Control 𝛿

‘Double Differencing’ ⟹ estimate 𝛿
• I call this DiD estimate using averages simple DiD
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Difference in Difference Graphically
The Differences−in−Differences Estimator

Period

Y

before after

δ̂

mean control

mean treatment

mean control

mean treatment
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DiD as a Regression

𝘺𝘪 𝘵 = 𝛽𝟢 + 𝛽𝟣𝘈𝘧 𝘵𝘦𝘳𝘵 + 𝛽𝟤𝘛𝘳𝘦𝘢𝘵𝘦𝘥𝘪 + 𝛿𝘈𝘧 𝘵𝘦𝘳𝘵 × 𝘛𝘳𝘦𝘢𝘵𝘦𝘥𝘪 + 𝜀𝘪 𝘵

where:

• 𝘈𝘧 𝘵𝘦𝘳𝘵 = 1 in the period after treatment occurs, zero otherwise
• 𝘛𝘳𝘦𝘢𝘵𝘦𝘥𝘪 = 1 if the individual is ever treated, zero otherwise
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DiD Regression in R

tidy(lm(sales ~ treatment_group + after + treatment_group:after,
data = did_data
))

# A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 1.80 0.144 12.5 2.03e-34
2 treatment_grouptreatment 0.400 0.204 1.96 5.01e- 2
3 after 0.731 0.204 3.59 3.44e- 4
4 treatment_grouptreatment:after 0.914 0.288 3.17 1.55e- 3
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Standard Error Adjustment

• Homoskedasticity in the standard errors is likely violated
• Cluster Robust Standard Errors are the default choice for DiD designs
• What unit to cluster?

• The variable that determines treatment assignment
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Parallel Trends

We must assume that Time effects treatment and control groups equally

• Otherwise controlling for time (i.e. after) won’t work

This is called the parallel trends assumption

• Again, if the Treatment hadn’t happened to anyone, the differences between
the treatment and control would stay the same

34 / 42



Checking for Parallel Trends

Like many assumptions - its untestable

• Though we can ‘check’ whether patterns in the data are suggestive its OK
• Here’s the most popular way:

• Are prior trends are the same for Treated and Control groups
• Generally, compute average of outcome by group over time
• (needs multiple pre-treatment periods)
• Was the gap changing a lot during that period? If not, suggestive we’re OK
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Visualizing Parallel Trends
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Isn’t this just CUPED in disguise

How is this different from CUPED?

CUPED estimate: 0.8561

CUPED is equivalent to Difference in Differences under the following conditions:

• 𝜃 = 𝟣,
• But in our example, ̂𝜃 is round(theta,4)

• No differences in mean outcomes at the level of treatment assignment
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Adding Control Variables

In applications, analysts may want to account for covariates in their DiD
specification by including covariates in their regression.

𝘺𝘪 𝘵 = 𝛽𝟢 + 𝛽𝟣𝘈𝘧 𝘵𝘦𝘳𝘵 + 𝛽𝟤𝘛𝘳𝘦𝘢𝘵𝘦𝘥𝘪 + 𝛿𝘈𝘧 𝘵𝘦𝘳𝘵 × 𝘛𝘳𝘦𝘢𝘵𝘦𝘥𝘪 + 𝘟𝘪𝜃 + 𝜀𝘪 𝘵

This is additional structure imposed by the researcher

Identifies the average treatment effect when the treatment effect is:

• Constant, and
• Additive

This is a stronger assumption than the control variable free approach
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“As good as random”

Two assumptions for causality:

1. Valid counterfactual outcomes

• Control Group + parallel trends solves this one for us

2. Conditional independence: nothing unobserved is causing selection into
treatment group

• Trickier …
• Randomised Control Trial or A/B Test like → You’re more than likely gonna
be OK

• Natural / Quasi Experiment → have you got a credible proxy for random
assignment?

• Profession’s thoughts: Large, visible, unexpected shocks
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A Warning!

• DiD’s popularity is relatively recent, so we’re still learning a lot about it!
• Most relevant has to do with staggered roll out DiD

• The regression version of DiD doesn’t necessarily need to have treatment
applied at one particular time

• Treatment could be gradually implemented over time
• Nothing we’ve explicitly said would prevent us from using the regression DiD
right!?

• Well… that’s what we thought for a long time.
• And you’ll see many of published studies doing this.
• BUT it turns out to actually bias results by quite a lot

• There are more complex, newer estimators for staggered roll out case,
• Too much for this class
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Recap

• When we cannot run a randomized experiment, we want to use
observational data that mimics random assignment as closely as possible

• Natural experiments (aka quasi experiments) mimic the random assignment
although the treatment assignment is not controlled by the analyst

• Difference in Differences strategy allows us to estimate the causal effect of a
intervention on outcome variables

• Difference in Differences relies on the parallel trends assumption, and an
analyst needs to provide evidence that shows the condition is satisfied to
make their research design credible
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