
Linear Regression with R
Social Media and Web Analytics @ TiSEM

Lachlan Deer

Last updated: 26 April, 2021

Motivation
This note is about the workhose tool of quantitative marketing and data science: regression analysis. The
goal is to give you a whirlwind tour of the key functions and packages. I’m going to assume that you already
know all of the necessary theoretical background on regression.1 This will not cover any of theoretical
concepts or seek to justify a particular statistical model. Most of the models in this document are pretty
silly, but they illustrate the main point – how to run a regression in R.

With these disclaimers noted, let’s get started..

Software Requirements
R packages

“Base” R already provides all of the tools we need for basic regression analysis. However, we’ll be using
several additional packages today, because they will make our lives easier and offer increased power for some
more sophisticated analyses.

• New (regression): fixest, estimatr, broom, modelsummary
• Already used: tidyverse

If you haven’t installed these packages, now would be a good time to do so:
to_install <- c("fixest", "estimatr", "broom")

install.packages(to_install)

get the latest version of modelsummary - support fixest
library(remotes)
remotes::install_github(’vincentarelbundock/modelsummary’)

Once installed, we can load them:
library("tidyverse")
library("fixest")
library("estimatr")
library("broom")
library("modelsummary")

I’ll try to be as explicit about where a particular function is coming from, whenever I use it below.
1See the course website for links to further material if you want to review the key concepts.

1

Example Data
We’ll mostly be working with the starwars data frame, which comes with the dplyr package. Let’s assign
it the name df:
df <- starwars

We’ll be interested in estimating regressions of the mass of starwars characters with their height.

Regression Basics
The lm() function

R’s main command for running regression models is the built-in lm() function. “lm” stands for “linear
models” and the syntax is rather intuitive:
lm(y ~ x1 + x2 + x3 + ..., data = my_data)

You’ll note that the lm() call includes a reference to the data source (in this case, a hypothetical data frame
called my_data). This means we need to be specific about where our regression variables are coming from
— even if my_data is the only data frame we have loaded at the time.

Let’s run a simple bivariate regression of mass on height using our dataset of starwars characters.
ols1 <- lm(mass ~ height, data = df)

And look at the output:
ols1

##
Call:
lm(formula = mass ~ height, data = df)
##
Coefficients:
(Intercept) height
-13.8103 0.6386

The resulting output is pretty terse. That’s only because it buries most of its valuable information — of
which there is a lot — within its internal list structure.

If you’re in RStudio, you can inspect this structure by typing View(ols1) or simply clicking on the “ols1”
object in your environment pane. Doing so will prompt an interactive panel to pop up for you to play around
with. That approach won’t work for this knitted R Markdown document, but I’ll explain what you would
see if you did this:

The ols1 object has a bunch of important stuff nested inside it. . . containing everything from the regression
coefficients, to vectors of the residuals and fitted (i.e. predicted) values, to the input data, . To summarise
the key pieces of information, we can use the generic summary() function.
summary(ols1)

##
Call:
lm(formula = mass ~ height, data = df)
##
Residuals:
Min 1Q Median 3Q Max
-61.43 -30.03 -21.13 -17.73 1260.06
##
Coefficients:

2

Estimate Std. Error t value Pr(>|t|)
(Intercept) -13.8103 111.1545 -0.124 0.902
height 0.6386 0.6261 1.020 0.312
##
Residual standard error: 169.4 on 57 degrees of freedom
(28 observations deleted due to missingness)
Multiple R-squared: 0.01792, Adjusted R-squared: 0.0006956
F-statistic: 1.04 on 1 and 57 DF, p-value: 0.312

Get “tidy” regression coefficients with the broom package

While it’s easy to extract regression coefficients via the summary() function, in practice I’ve begun using the
broom package (link) as a simple alternative. broom has a bunch of features to convert regression (and
other statistical) objects into “tidy” data frames. This is especially useful because regression output is so
often used as an input to something else. Let’s use broom::tidy(..., conf.int = TRUE) to coerce the
ols1 regression object into a tidy data frame of coefficient values and key statistics.
library(broom) ## Already loaded
tidy(ols1, conf.int = TRUE)

A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -13.8 111. -0.124 0.902 -236. 209.
2 height 0.639 0.626 1.02 0.312 -0.615 1.89

broom has a couple of other useful functions too. For example, broom::glance() summarises the model
“meta” data (such as R2) in a data frame.
glance(ols1)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0179 0.000696 169. 1.04 0.312 1 -386. 777. 783.
... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Note: If you’re wondering how to export regression results to other formats (e.g. nice tables that we see in
reports and publications), we’ll get to that at the end of this note.

Regressing on a Subset of Data

So far we have a single variable regression to explain mass - its all about the height of the character. This
seems a little inadequate — we could readily think of other characteristics such as species and homeworld
to explain mass in addition to height.

Before we get to that, our data has an extreme outlier:

3

https://broom.tidyverse.org/

Jabba!

0

500

1000

100 150 200 250
height

m
as

s
Spot the outlier

Remember: Always plot your data...

Maybe we should exclude Jabba from our regression?

You can do this in two ways: 1) Create a new data frame and then regress, or 2) Subset the original data
frame directly in the lm() call. Let’s look at how to do each of these now:

1) Create a new data frame

Recall that we can keep multiple objects in memory in R. So we can easily create a new data frame that
excludes Jabba using the filter() command from dplyr to remove him.

Let’s remove him and re-run the regression:
starwars2 <-

df %>%
filter(name != "Jabba Desilijic Tiure")

ols2 <- lm(mass ~ height,
data = starwars2)

tidy(ols2, conf.int = TRUE)

A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -32.5 12.6 -2.59 1.22e- 2 -57.7 -7.38
2 height 0.621 0.0707 8.79 4.02e-12 0.480 0.763

2) Subset directly in the lm() call

Running a regression directly on a subsetted data frame is equally easy.
ols2a <- lm(mass ~ height,

data = starwars %>% filter(name != "Jabba Desilijic Tiure"))

tidy(ols2a, conf.int = TRUE)

A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -32.5 12.6 -2.59 1.22e- 2 -57.7 -7.38

4

2 height 0.621 0.0707 8.79 4.02e-12 0.480 0.763

glance(ols2a)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.580 0.572 19.1 77.2 4.02e-12 1 -252. 511. 517.
... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

The overall model fit is much improved by the exclusion of this outlier, with R2 increasing to 0.58. However,
we should be quite cautious about throwing out data.2

Nonstandard errors
Dealing with statistical irregularities (heteroskedasticity, clustering, etc.) is a fact of life for empirical
researchers. The estimatr package (link), provides convenient aliases for the standard regression functions,
including standard error corrections easily as part of the regression command.3 Let’s see it in action.

Robust standard errors

You can get heteroskedasticity-consistent (HC) “robust” standard errors using estimatr::lm_robust().
Let’s implementing a robust version of the ols1 regression that we ran earlier.
library(estimatr) ## Already loaded
ols1_robust <- lm_robust(mass ~ height,

data = df)
tidy(ols1_robust, conf.int = TRUE)

term estimate std.error statistic p.value conf.low
1 (Intercept) -13.810314 23.45557632 -0.5887859 5.583311e-01 -60.7792950
2 height 0.638571 0.08791977 7.2631109 1.159161e-09 0.4625147
conf.high df outcome
1 33.1586678 57 mass
2 0.8146273 57 mass

The package defaults to using “Eicker-Huber-White” robust standard errors, commonly referred to as “HC2”
standard errors. This is not the ‘default’ robust standard error that some other software packages use, so
any difference across software might stem from there.4

Clustered standard errors

Clustered standard errors is an issue that most commonly affects data when we observe the same individual
multiple times. As such, let’s hold off a long discussion of clustering until we get to the panel data section
below. But here’s a quick example of clustering with estimatr::lm_robust() just to illustrate, where we
suppose the regression error variance differs by a character’s homeworld:
ols1_cluster <- lm_robust(mass ~ height,

data = starwars,
clusters = homeworld)

tidy(ols1_cluster, conf.int = TRUE)

2Since I am focussed on regression in this note, I’m not going to go in to detail on data cleaning / filtering here. In short,
be cautious when you decide to filter out observations and think about the consequences of doing so.

3For many years, dealing with standard errors was the domain of the sandwich package (link). Lot’s of legacy code will
use this appraoch, so I thought I should mention it.

4You can easily specify alternate methods using the se_type = argument.5 For example, you can specify Stata robust
standard errors if you want to replicate code or results from that language.

5

https://declaredesign.org/r/estimatr/articles/getting-started.html
https://cran.r-project.org/web/packages/sandwich/index.html

term estimate std.error statistic p.value conf.low
1 (Intercept) -9.3014938 28.84436408 -0.3224718 0.7559158751 -76.6200628
2 height 0.6134058 0.09911832 6.1886211 0.0002378887 0.3857824
conf.high df outcome
1 58.0170751 7.486034 mass
2 0.8410291 8.195141 mass

Dummy Variables
For the next couple of sections, it will prove convenient to demonstrate R’s regression functionality using a
subsample starwars data that uses only the human characters.
humans <-

starwars %>%
filter(species=="Human")

Dummy Variables

Dummy variables are a core component of many regression models. R is “dummy variable friendly” and
makes using dummy variables easy for us. Let’s suppose we want to add gender to our regression model to
explain mass. In our humans sample, gender takes the following values:
humans %>%

select(gender) %>%
distinct()

A tibble: 2 x 1
gender
<chr>
1 masculine
2 feminine

Notice here that gender is a character variable (i.e. a string of text). If we simply include gender in the
regression:
ols_gender <- lm(mass ~ height + gender,

data = humans)
tidy(ols_gender, conf.int = TRUE)

A tibble: 3 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -84.3 65.8 -1.28 0.216 -222. 53.4
2 height 0.879 0.407 2.16 0.0441 0.0258 1.73
3 gendermasculine 10.7 13.2 0.814 0.426 -16.9 38.4

R knows what to do with it. Specifically, it knows gender takes on two values, and thus knows to include
only one of them in the regression (here it chose masculine). R knows this because it understands that the
only way to use a set of character strings in a regression sensibly is to include them as dummy variables and
it knows it must include all but one of the possible set of string values. This is quite nice!6

Interaction effects

R also provides a convenient syntax for specifying interaction terms directly in the regression model. The
following expansion operators are what we need:

6OK, it may seem obvious now we’ve explained it . . . but many other statistical softwares don’t allow you to do this so
easily.

6

• x1:x2 “crosses” the variables (equivalent to including only the x1 × x2 interaction term)
• x1/x2 “nests” the second variable within the first (equivalent to x1 + x1:x2;
• x1*x2 includes all parent and interaction terms (equivalent to x1 + x2 + x1:x2)

As a rule of thumb, it is generally advisable to include all of the parent terms alongside their interactions.
This makes the * option a good default.7

Let’s see this in action! We might think that the relationship between a person’s body mass and their height
is modulated by their gender, i.e. the the effect of height on mass differs by gender. Then we would want to
run a regression of the form,

Mass = β0 + β1DMale + β2Height+ β3DMale ×Height

To implement this in R, we run the following,
ols_ie <- lm(mass ~ gender * height, data = humans)
tidy(ols_ie, conf.int = TRUE)

A tibble: 4 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -61.0 204. -0.299 0.768 -490. 368.
2 gendermasculine -15.7 220. -0.0716 0.944 -477. 446.
3 height 0.733 1.27 0.576 0.572 -1.94 3.41
4 gendermasculine:height 0.163 1.35 0.121 0.905 -2.67 3.00

Fixed Effect Models
Fixed effects with the fixest package

fixest is relatively new on the scene and has become a bit of a mainstay for regression modellers in economics
and marketing.
We won’t be able to cover all of fixest’s features in depth here, but I hope to give you everything you need
to get up and running comfortably.

Simple FE model

The package’s main function is fixest::feols(), which is used for estimating linear fixed effects models.
The syntax is such that you first specify the regression model as per normal, and then list the fixed effect(s)
after a |.

Let’s use an example to illustrate. We want to run our simple regression of mass on height, but this time
control for species-level fixed effects:
library(fixest) ## Already loaded
ols_fe <- feols(mass ~ height

| ## Fixed effect(s) go after the "|"
I think writing over multiple lines
helps me be explicit

species,
data = starwars)

tidy(ols_fe, conf.int = TRUE)

A tibble: 1 x 7
term estimate std.error statistic p.value conf.low conf.high

7Though I personally have a habit of using “:” and then manually including the x1+x2.

7

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 height 0.975 0.0443 22.0 4.56e-20 0.888 1.06

Note that the estimated model ols_fe has automatically clustered the standard errors by the fixed effect
variable (i.e. species). If we want to do something else, we need to be explicit:

We’ll explore some more options for adjusting standard errors in fixest objects shortly, but you can specify
which standard errors you want reported as follows:
tidy(ols_fe, se = ’standard’, conf.int = TRUE)

A tibble: 1 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 height 0.975 0.136 7.14 0.000000138 0.707 1.24

Which reports the ‘standard’ standard errors (i.e. no clustering, and no heteroskedasticity adjustment).

Before continuing, let’s quickly save a “tidied” data frame of the coefficients for later use.
coefs_fe <- tidy(ols_fe, se = ’standard’, conf.int = TRUE)

High dimensional FEs and multiway clustering

fixest supports (arbitrarily) high-dimensional fixed effects - which means we can have as many fixed effects
are we like. It also supports multiway clustering, so we can have clustered standard errors of relatively
sophisticated form if we need to. For the purpose of this class, the large number of fixed effects is most
important, so let’s see it in action. To do this, we’ll add “homeworld as a fixed effect”.
ols_hdfe <- feols(mass ~ height

|
species + homeworld,
data = starwars)

tidy(ols_hdfe, conf.int = TRUE)

A tibble: 1 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 height 0.756 0.333 2.27 0.0308 0.103 1.41

That seems easy enough to do, but there’s a slight wrinkle. The standard errors are automatically clustered
by the first fixed effect variable, which for us is species. If we wanted to cluster them instead by homeworld,
we’d need to be explicit:
ols_hdfe2 <- feols(mass ~ height

|
species + homeworld,
cluster = ~homeworld,
data = starwars)

NOTE: 32 observations removed because of NA values (LHS: 28, RHS: 6, Fixed-effects: 13).

tidy(ols_hdfe2, conf.int = TRUE)

A tibble: 1 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 height 0.756 0.0457 16.5 1.16e-18 0.666 0.846

And if we wanted to cluster by both species and homeworld:

8

ols_hdfe3 <- feols(mass ~ height
|

species + homeworld,
cluster = ~species + homeworld,
data = starwars)

NOTE: 32 observations removed because of NA values (LHS: 28, RHS: 6, Fixed-effects: 13).

tidy(ols_hdfe3, conf.int = TRUE)

A tibble: 1 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 height 0.756 0.116 6.49 0.000000416 0.528 0.984

Presentating Regression Estimates
I’m going to discuss two ways to present regression estimates: as a regression table, and as a coefficient plot.

Regression Tables

There are loads of different packages to help package up regressions into tables. I prefer modelsummary
package (link) for creating and exporting regression tables.8 It is extremely flexible and handles all manner of
models and output formats. modelsummary also supports automated coefficient plots and data summary
tables (which we’ll want to get get back to shortly).

To see how easily we can get started, lets produce a summary table of a collection of the estimates we
produced so far:
library(modelsummary) ## Already loaded
Note: msummary() is an alias for modelsummary()
msummary(list(ols1, ols_ie, ols_fe, ols_hdfe))

Immediately we see two great features (table appears on next page due to space constraints):

1. The default table already looks relatively appealing
2. The table came out in the same format as our document

• You might not have even noticed this
• modelsummary will automatically coerce your tables to the format that matches your document

output: HTML, LaTeX/PDF, RTF, etc. Of course, you can also specify the output type

I’m not going to go further into formatting this table, if you’re interested check out the documentation –
you can do a lot.

8The documentation is outstanding and you should read it, but here is a bare-boned example just to demonstrate.

9

https://hughjonesd.github.io/huxtable/design-principles.html
https://vincentarelbundock.github.io/modelsummary
https://vincentarelbundock.github.io/modelsummary/#saving-and-viewing-output-formats
https://vincentarelbundock.github.io/modelsummary/articles/modelsummary.html

Model 1 Model 2 Model 3 Model 4
(Intercept) -13.810 -61.000

(111.155) (204.057)
height 0.639 0.733 0.975 0.756

(0.626) (1.274) (0.044) (0.333)
gendermasculine -15.722

(219.544)
gendermasculine × height 0.163

(1.349)
Num.Obs. 59 22 58 55
R2 0.018 0.444 0.997 0.998
R2 Adj. 0.001 0.352 0.993 1.008
R2 Within 0.662 0.487
R2 Pseudo
AIC 777.0 188.9 492.1 513.1
BIC 783.2 194.4 558.0 649.6
Log.Lik. -385.503 -89.456 -214.026 -188.552
F 1.040 4.801
Std. Errors Clustered (species) Clustered (species)
FE: homeworld X
FE: species X X

feminine (N=9) masculine (N=26)
Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error

height 160.2 7.0 182.3 8.2 22.1 3.0
mass 56.3 16.3 87.0 16.5 30.6 10.1
birth_year 46.4 18.8 55.2 26.0 8.8 10.2

N % N %
eye_color blue 3 33.3 9 34.6

blue-gray 0 0.0 1 3.8
brown 5 55.6 12 46.2
dark 0 0.0 1 3.8
hazel 1 11.1 1 3.8
yellow 0 0.0 2 7.7

Aside: Data Summary Tables

A variety of summary tables can be produced by the set of datasummary*() functions that live inside
modelsummary. Again, read the documentation to see all of the options.

To show an example, let’s get a smaller set of columns from our humans data:
humans2 <- humans %>%

select(gender, height, mass, birth_year, eye_color)

Now we can look at how summary statistics of height, mass, birth_year and eye_color vary across gender
(output appears above as the second table):
datasummary_balance(~ gender,

data = humans2)

Note that for the continuous variables height, mass, birth_year we get the difference in means between
the two groups.

10

https://vincentarelbundock.github.io/modelsummary/articles/datasummary.html

Coefficient Plots

Sometimes instead of reporting regression results as a table, we would like to visually see the difference in an
estimated coefficient and the standard error in a plot. The modelplot() function from themodelsummary
package can do this for us.

For example, let’s try and visualize the different regression coefficients and the standard errors from the
simple OLS regression, the fixed effect regression and the high dimensional fixed effect regression:
library(modelsummary) ## Already loaded

create a list of the models we want to present
mods = list(’Simple OLS’ = ols1,

’Fixed Effects’ = ols_fe,
’High Dim. Fixed Effects’ = ols_hdfe

)

modelplot(mods,
coef_omit = "Inter")

height

0 1 2
Coefficient estimates and 95% confidence intervals

Fixed Effects

High Dim. Fixed Effects

Simple OLS

Again, the default plot looks quite presentable. modelplot() creates figures that are the ggplot2 objects,
which means that you can do further post-processing of the plot using functions we already know from
ggplot2. For example:
modelplot(mods,

coef_omit = "Inter") +
coord_flip() +
ggtitle(’Coefficient Estimates of Height on Mass’) +
xlab because it only appears on y-axis by flipping,
need to use the normal location
xlab(’Coefficient Est. w/ 95% CI’) +
theme_bw()

11

https://vincentarelbundock.github.io/modelsummary/articles/modelplot.html

0

1

2

height

C
oe

ffi
ci

en
t E

st
. w

/ 9
5%

 C
I

model

Fixed Effects

High Dim. Fixed Effects

Simple OLS

Coefficient Estimates of Height on Mass

Acknowledgements
This guide borrows quite liberally (occasionally maybe even too much so at times) from an excellent
lecture from Grant McDermott at U Oregon “Regression Analysis in R” as part of his class “Data Science
for Economists”. I’ve tried to trim down the content to fit what is needed for this class, and add some of my
own flair here and there.

• Any errors are purely my own!

12

https://github.com/uo-ec607/lectures
https://github.com/uo-ec607/lectures

	Motivation
	Software Requirements
	R packages

	Example Data
	Regression Basics
	The lm() function
	Get ``tidy'' regression coefficients with the broom package
	Regressing on a Subset of Data

	Nonstandard errors
	Robust standard errors
	Clustered standard errors

	Dummy Variables
	Dummy Variables
	Interaction effects

	Fixed Effect Models
	Fixed effects with the fixest package

	Presentating Regression Estimates
	Regression Tables
	Aside: Data Summary Tables
	Coefficient Plots

	Acknowledgements

