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Motivation
• Recall the 6 assumptions we need for the OLS estimator to be unbiased and have the minimum variance:

1. Our sample (the xk’s and yi) was randomly drawn from the population.

2. y is a linear function of the βk’s and ui.

3. There is no perfect multicollinearity in our sample.

4. The explanatory variables are exogenous: E [u|X] = 0 ( =⇒ E [u] = 0).

5. The disurbances have constant variance σ2 and zero covariance, i.e., - E
[
u2

i

∣∣Xi

]
=

Var (ui|Xi) = σ2 =⇒ Var (ui) = σ2 - Cov (ui, uj |Xi, Xj) = E [uiuj |Xi, Xj ] = 0 for i 6= j

6. The disturbances come from a Normal distribution, i.e., ui
iid∼ N

(
0, σ2)

.

• While (4) - exogeneity - is by far the most important for getting an unbiased estimate, violations of
(5) will lead to misguided our statistical inference

– Why? (5) effects the standard errors, which are the basis of hypothesis testing and confidence
intervals

– If (5) is violated, then we might be making the wrong conclusions

• This note looks at two violations of (5):

1. Heteroskedasticity: The variance of the error term is different for different observations

E
[
u2

i

]
= σ2

i

2. Clustered Standard Errors: The variance of the error term is correlated across observations

E [uiuj ] 6= 0 for some i 6= j

• Dealing with violations of (5) is an part of every day life in marketing analytics

– We need to know what to do when we see it

Heteroskedasticity
• Problem we face: heteroskedasticity

E
[
u2

i

]
= σ2

i

– This means that the variance of the error term is different for different observations

• Heteroskedasticity is present when the variance of u changes with any combination of our explana-
tory variables

• Questions we want to answer:
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– How can we detect heteroskedasticity?
– What do we do if we detect it?

Detecting Heteroskedasticity

• Two approaches:
1. Formal statistical tests
2. “Eye-conometrics”

• We’ll focus on “Eye-conometrics” - i.e. looking for it from visualizing data
– It means we need to do less statistical analysis1

• We can visually detect if the residual,

ei = yi − β̂0 − β̂1xi1 − β̂2xi2 − ...

seems to look non-constant when plotted against either:
(a) One or any of the x variables
(b) Against the fitted values of the regression

– Why? fitted values are just a specific combination of the x’s.
• Here’s what the errors should look like when there is no heteroskedasticity
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• Here’s three examples of what the errors look like when there is heteroskedasticity:
(a) Variance of e increases with x

1Which for the purpose of this class is useful, though it is not a definitive guarantee we spot heteroskedasticity correctly.
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(b) Variance of e increases at the extremes of x
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(c) Variance of e differs by group
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Living With Heteroskedasticity

• In the presence of heteroskedasticity:
– The regression coefficients are still unbiased
– The regression standard errors are biased

∗ Which means confidence intervals and hypothesis tests are going to give potentially wrong
conclusions

• What can we do about it?
– pragmatic answer: find unbiased estimates for the standard errors2

∗ Unbiased standard errors → ‘correct’ confidence intervals and hypothesis tests
• Pragmatic Answer: Heteroskedasticity robust standard errors

– Essentially a different way to estimate the standard errors
– So that they are “robust” (i.e. unbiased) when there is heteroskedasticity

• How can we do this in R?

Heteroskedasticity Robust Standard Errors in R

• We will use the estimatr package to compute heteroskedasticity robust standard errors:
library(estimatr)
library(broom) # to make our results look tidy

• Let’s first download some data: from the NBA
– i.e. basketball data from the US
– Statistics about average player performance for each player in each year of their career (1946 -

2009)
url <- "https://bit.ly/3sO4hrD"

out_file <- "data/nba_data.csv"
download.file(url,

destfile = out_file,
mode = "wb")

• Read in the data and tidy it up a bit:
2There are other approaches, but this is the simplest and most widely used.

4



library(readr)
# you may get "parsing failure" warnings ... ignore them
nba <- read_csv(out_file)

# clean up the data a little
nba <-

nba %>%
rename(

points = pts,
player_id = ilkid

) %>%
# keep only those who played "enough" in a year
filter(minutes > 2) %>%
select(player_id, points, minutes)

• Let’s run the following regression:

pointsi = β0 + β1minutesi + ui

i.e, does average points per game for a player in a given season vary depending on the number of minutes?
(Likely, yes - expect β1 to be positive)

• The ‘standard’ way that assumes no heteroskedasticity
ols1 <- lm(points ~ minutes,

data = nba)
tidy(ols1, conf.int = TRUE)

## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -79.3 2.22 -35.8 6.62e-272 -83.7 -75.0
## 2 minutes 0.492 0.00139 353. 0 0.489 0.495

• OK, thats a very small standard error. . .

• Is there presence of heteroskedasticity?

– I’ll check how the residuals vary with the regression fitted values
– (you could also do this by looking at residuals vs points)

library(ggplot2) # for plotting
# get residuals and fitted values
nba <-

nba %>%
mutate(

residuals = resid(ols1),
fitted_val = predict(ols1)

)

nba %>%
ggplot(aes(x = fitted_val,

y = residuals,
alpha = 0.35)

) +
geom_point() +
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theme_bw() +
theme(legend.position = "none")
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• Figure above shows definite evidence of a “fan” shape.
– =⇒ probably heteroskedasticity

• Let’s get heteroskedasticity robust standard errors. We use the lm_robust() function
# library(estimatr) # already loaded

ols1a <- lm_robust(points ~ minutes,
data = nba)

tidy(ols1a, conf.int = TRUE)

## term estimate std.error statistic p.value conf.low conf.high
## 1 (Intercept) -79.3177389 1.619594676 -48.97382 0 -82.4922703 -76.1432075
## 2 minutes 0.4919543 0.001966078 250.22115 0 0.4881006 0.4958079
## df outcome
## 1 20864 points
## 2 20864 points

• Let’s compare the standard error on minutes:
– Assuming no heteroskedasticity: 0.0013922
– Assuming heteroskedasticity: 0.0019661
– =⇒ a 41.22 % increase in their magnitude!

Clustered Standard Errors
• Problem we face: correlated errors across observations

E [uiuj ] 6= 0 for some i 6= j

– i.e. the correlation of the error term between two observations is non-zero
– Also called clustered errors

• Questions we want to answer:
– What is clustering?
– What to do if errors are correlated?
– (It’s hard to detect per se)
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What is Clustering?

• Often, observations may share important observable and unobservable characteristics that could in-
fluence an outcome variable

– A sample of individuals, groups of which live in the same province
– A sample of firms, groups of which are located in the same city
– and so on. . .

• We might worry that observations in each of these groups are not independent, and that the regression
error terms might be similar (or at least correlated) within the group.

• If there is within group correlation, assumption (5) of the OLS estimator fails

– And it will impact our analysis

Living with Clustering
• The presence of clustering and its’ effects are conceptually similar to when we dealt with heteroskedas-

ticity.

• In the presence of clustered errors:

– The regression coefficients may be biased
∗ If we think the clustering effects do not “average out”
∗ i.e. clustering might cause violations to exogeneity
∗ Which means we have issues interpreting our regression coefficients

– The regression standard errors are biased
∗ Which means confidence intervals and hypothesis tests are going to give potentially wrong

conclusions

• What can we do about it?

– Pragmatic answer:
∗ Find a way to “de-bias” the regression coefficients

· So that we can get unbiased regression coefficients
∗ Find unbiased estimates for the standard errors3

· Unbiased standard errors → ‘correct’ confidence intervals and hypothesis tests

• Pragmatic Answer - how to do it:

– Add Cluster-specific fixed effects to the regression
∗ This will hopefully “solve” our endogeneity problem and remove any bias in our coefficients

– Cluster robust standard errors
∗ A different way to estimate the standard errors
∗ So that they are “robust” (i.e. unbiased) when there is clustering

• How can we do this in R?

– There will be two approaches:
(1) Assume clustering does not cause endogeneity =⇒ only deal with the need to adjust the

standard errors
(2) Assume clustering might be causing endogeneity =⇒ deal with fixed effects and the need to

adjust the standard errors

Cluster Robust Inference in R

• Again, let’s work with our NBA data, and the points versus minutes regression.
3There are other approaches, but this is the simplest and most widely used.
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– The data are annual, and per player, so we might worry that residuals are correlated within each
player

Case 1: Only Adjust the Standard Errors

• estimatr let’s us handle clustering with the lm_robust function too
– But only if there’s one source of clustering . . . correlation within a player is probably the most

important, so let’s start there:
ols2 <- lm_robust(points ~ minutes,

clusters = player_id,
data = nba)

tidy(ols2, conf.int = TRUE)

## term estimate std.error statistic p.value conf.low
## 1 (Intercept) -79.3177389 3.47020772 -22.85677 9.624695e-104 -86.1230327
## 2 minutes 0.4919543 0.00505906 97.24223 0.000000e+00 0.4820303
## conf.high df outcome
## 1 -72.5124452 2160.996 points
## 2 0.5018782 1428.585 points

• We see that, by clustering the standard errors:
– The regression coefficient did not change
– The standard error on minutes increases to 0.0050591

∗ =⇒ a 263.38 % increase in their magnitude!
∗ That is very substantial

Case 2: Cluster Specific Fixed Effects

• If we think that the errors are correlated within a player and don’t “average out” we have to worry
about biased regression coefficients and biased standard errors4

• Two problems, needs two solutions:

(1) Fixed Effects at the level of clustering
– Helps fix out not averaging out to zero problem
– And tries to “de-bias” the regression coefficients

(2) Adjusting the standard errors
– To fix the standard errors

• Easiest way to achieve this is with the fixest package. It allows us to estimate linear regressions with
fixed effects using the feols() package.

• Run the regression, adding fixed effects for each player:
ols2a <- feols(points ~ minutes

|
# fixed effects for each player
player_id,
data = nba)

• Let’s look at what comes out . . .

1. If add the fixed effects, but do not worry about making standard errors robust to clustering:
tidy(ols2a, se = "standard", conf.int = TRUE)

4More technically, “averaging out” would be an assumption that the effect of the clustering is zero on average. This is a
relatively big assumption to make in most situations.
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## # A tibble: 1 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 minutes 0.465 0.00143 325. 0 0.462 0.468

• Regression coefficient of minutes decreases to 0.47
– And our previous estimate of the minutes coefficient, 0.4919543 no longer falls in the new confi-

dence interval

2. If we add the effects and correct the standard errors for clustering:
# by default, feols clusters std errors by the first fixed effect,
# we only have one, so that is by player_id
tidy(ols2a, se = "cluster", conf.int = TRUE)

## # A tibble: 1 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 minutes 0.465 0.00386 121. 0 0.458 0.473

• Adding cluster robust standard errors does not change our regression coefficient
– In the same way that heteroskedasticity robust ones did not either

• The standard error on minutes is 0.0039
– =⇒ a 177.19 % increase in its’ magnitude when compared to the naive OLS estimate (ols1)
– =⇒ a 169.52 % increase in its’ magnitude when compared to the estimate with fixed effects

(ols2)

Bottom Line
• Worrying about assumption (5) - i.e. whether the standard errors have either heteroskedasticity or

clustering is important
– With heteroskedasticity regression coefficients OK, inference is wrong
– With clustered errors, regression coefficients might not be OK, and inference is wrong

• Remark: We did not worry about what if “heteroskedasticity and clustering” at the same time
– Why? cluster robust standard errors will clean up any issues with heteroskedasticity for “free”
– Then why not always do clustering?

∗ We have to take a stand on what variables might be causing the clustering
∗ Heteroskedasticity doesn’t need us to do this
∗ Though, most modern empirical work will cluster the standard errors
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